CSE 451: Operating Systems
Winter 2026

Module 1
Course Introduction

Gary Kimura

Course Staff

Instructor:

Teaching Assistants:

Gary Kimura

Aliyan Muhammad
Druhin Bhowal
Yusong Yan

Zack Crouse
Jonathan Trinh
Soham Sherish Raut

Course Details

Information portals

* Course webpage, Canvas, Ed, Gradescope, gitlab
Class Prerequisites:

e (CSE332: Data Structures and Parallelism

* (CSE333: Systems Programming

e (CSE351: The Hardware/Software Interface

Lectures and Sections (will be recorded on zoom or panopto, and
lecture slides/notes posted)

Projects — Led by the TAs

* 4 |abs using xk (brush up on programming in C). Due about every
two weeks. Check the class website for the actual schedule.

Grading (subject to change)
* Projects 70%, Design Docs 10%, Problem Sets (aka exams) 20%
* W credit will be offered

Occasional short detours or videos on Hard Lessons Learned.

The Projects

Start them early
Four of them

Teams of two. You're likely to be happier if you form a team on your own
than if we randomly assign them.

» Working solo is strongly discouraged, and the TAs are not a
replacement for a lab partner

Debugging is a skill best learned through experience
Do not believe that passing the test cases means your code works...
» Sorry

Course Objectives

. (One thing that | hope you learn from this class) How an OS is
designed and built. To better know how to use the OS

. Debugging large programs, adding new features to an existing
(incomplete codebase)

. Quote in the Cutler lab
“Bugs: if you don’t put them in, you don’t have to take them out.”

. A lot of material to cover in the first few weeks, before it all makes
sense

. Textbook: academic head knowledge.
OSPP will be our main textbook
Additional material is available online for free, see class website

. Lectures: enhance and supplement the textbook and do deep dives
into some specific implementation issues.

. Projects: get hand dirty, learn by doing

0 N o U B w N oE

Course Roadmap (subject to change)

Chapter 2 Kernel Abstraction

Chapter 3 Programming Interface
Chapter 4 Concurrency

Chapter 5 and 6 Synchronization
Chapter 8, 9, 10 Memory Management
Chapter 7 Scheduling

Chapter 11, 12, 13, 14 Storage

. Wrap up loose ends

Operating
Systems

Principles & Practice

Thomas Anderson =
Michael Dahlin

"y

w Which Operating System do you use? .

An important underlying concept
Policy vs. Mechanism

Policy: is what you are trying to achieve
All the programs running on a computer get equal access to the CPU

Mechanism: is how you achieve it
Use timers and context switching to share the CPU

The lectures and textbook is mostly about policy, the
projects deal with mechanism

OS Tidbit

My own observation is that the overall basic building blocks
(i.e., structure) of the OS was done in the 50s to early 70s.

Meaning the fundamental building blocks haven’t changed
much in 50 years.

The relative importance and scale of the pieces have changed
but their basic functions remain mostly the same.

The big buckets might be memory, jobs (i.e., tasks and
processes), storage, and a few more.

There have been tweaks over the years that we will talk
about throughout the class.

What is an o ﬂ 2

' ? User-mod
operatlng system. ser-mode - - -
+ Software to | L] [
Kermed-usar Inderface
m a n a ge a Kernel-mode _\"‘Abslmzl ::’mu no:hml
’ 4 F N\
CO m p ute r S . | File Systam Virual Memery |
resources for its \ / \ /
(A 4 \
users and | TCPAP Metwacking | scrotuing |
. . \ J \ /
a ppl Icatlons Hardware Abstraction Laper
s N\
{ Hardware Spacific Softmare |
ard Device Drivers)
4 N\ ™~
Hardware | Processees | | Adgrass Traseistion
_ _J 8 J
e \ [A
Graghics Preosssor | Nelwork
S /L

Operating System Roles
(evolved over time)

* Referee:
— Ensures that everyone plays by the rules
— Resource allocation among users, applications
— Isolation of different users, applications from each other
— Communication between users, applications
 |llusionist:
— Each application appears to have the entire machine to itself
— Infinite number of processors, (near) infinite amount of
memory, reliable storage, reliable network transport

e Glue:
— Libraries, user interface widgets, ...

Also viewed as Virtualization, Concurrency, and Persistence

Example: File Systems

e Referee:

— Prevent users from accessing each other’s files without
permission
— Even after a file is deleting and its space re-used
* [llusionist:
— Files can grow (nearly) arbitrarily large

— Files persist even when the machine crashes in the middle of a
save

e Glue:
— Named directories, printf, ...

OS Challenges

e Portability

— For programs:
* Application programming
interface (API)
* Abstract virtual machine
(AVM)
— For the operating system

e Hardware abstraction
layer

Users

User-mode

Kernel-mode

Hardware

APP LFP P
Systar Syrtem System
Libeary Lideary Lbrry

Kemed-usar Inderface
Abstract virtusl rmashene)
' N e N
I File Systam l Virual Memeey |
'y J AN J
'/ '\‘ '/ !
[TCP/IP Natmarkieg Soreduing |
n\ ./l l\- /-
Hardmare Abstraction Laper
I Y
| Hardware-Spacific Softmare
. and Device Drivers .
N 4
4 N\ 7 N
‘ Procesyeey ' Adtrass Trarsd sion |
‘_ -./' .\‘ . J
/7 ~ F &

More OS Challenges

Reliability

— Does the system do what it was designed to do?

Availability
— What portion of the time is the system working?
— Mean Time To Failure (MTTF), Mean Time to Repair

Security
— Can the system be compromised by an attacker?

Privacy
— Data is accessible only to authorized users

Even more OS Challenges

Performance
— Latency/response time
* How long does an operation take to complete?
— Throughput
* How many operations can be done per unit of time?
— Overhead
* How much extra work is done by the OS?
— Fairness
* How equal is the performance received by different users?
— Predictability
* How consistent is the performance over time?
Backward and Forward Compatibility
— Can it run legacy apps?
— How to accommodate growing or advancing Hardware. e.g., word
Size, or memory size.

Operating System History

Batch to timeshare

Single User to multiuser to single user (PC) to multiuser
(servers, etc.)

Cost of computer time compared to people time

Single processor” to multiple processors to distributed
systems

There is a lot of legacy code in Operating Systems specifically for
dealing with single processor systems. What does that mean today?

Early Operating Systemes:
Computers Very Expensive
People Less So

* One application at a time
— Had complete control of hardware
— OS was runtime library
— Users would stand in line to use the computer

* Batch systems

— Keep CPU busy by having a queue of jobs
— OS would load next job while current one runs
— Users would submit jobs, and wait, and wait, and

IBM 360 Mainframe

EUX

QOLYMPI 6U¥
D HIV

R

Time-Sharing Operating Systems:
Computers and People Expensive

* Multiple users on computer at same time
— Multiprogramming: run multiple programs at same
time
— Interactive performance: try to complete

everyone’s tasks quickly

— As computers became cheaper, more important to
optimize for user time, not computer time

DEC PDP 11 (mini-computer)
(Tape Drive, Removable Hard Drive,
Control Panel, Operator Console)

ADDRESS

DATA PATH

BUS REGITER

SUPER 1

SuPER

More PDP 11

KERNEL D

vk

Today’s Operating Systems:
Computers Cheap

Smartphones
Embedded systems
Internet of Things
Laptops

Tablets

Virtual machines

Data center servers

Tomorrow’s Operating Systemes:
Everything gets Bigger

Giant-scale data centers

Increasing numbers of processors per
computer

Increasing numbers of computers per user
Very large scale storage

And more compact

Computer Performance Over Time

1981 1997 2014 (;;3?"“"

Uniprocessor speed (MIPS) 1 200 2500 2.5K
CPUs per computer 1 1 10+ 10+
Processor MIPS'$ $100K 325 $0.20 500K
DRAM Capacity (MIB)'S 0.002 2 1K SO00K
Disk Capacity (GiB)/$ 0.003 7 25K 10M
Home Internet 300bps 256Kbps 20 Mbps 100K

10Mbps 100Mbps 10Gbps 1000
Machine room network (shared) (switched) (switched)
Ratio of users 100:1 1:1 1:several 100+

to computers

e But what hasn’t increased over time?
e Have we reached certain limits?

Next Up (Chapter 2 & 3) Kernel Abstractions

Roadmap for next few days

* Hardware modes

* Interrupts, exceptions, and syscalls (traps)
* Memory layout

* Booting the OS

* Processes and Process Management

Attack on Windows NTFS!

