
CSE 451: Operating Systems
Winter 2026

Module 1
Course Introduction

Gary Kimura

Course Staff

Instructor: Gary Kimura

Teaching Assistants: Aliyan Muhammad
Druhin Bhowal
Yusong Yan
Zack Crouse
Jonathan Trinh
Soham Sherish Raut

Course Details

• Information portals
• Course webpage, Canvas, Ed, Gradescope, gitlab

• Class Prerequisites:
• CSE332: Data Structures and Parallelism
• CSE333: Systems Programming
• CSE351: The Hardware/Software Interface

• Lectures and Sections (will be recorded on zoom or panopto, and
lecture slides/notes posted)

• Projects – Led by the TAs
• 4 labs using xk (brush up on programming in C). Due about every

two weeks. Check the class website for the actual schedule.
• Grading (subject to change)

• Projects 70%, Design Docs 10%, Problem Sets (aka exams) 20%
• W credit will be offered

• Occasional short detours or videos on Hard Lessons Learned.

The Projects

• Start them early
• Four of them
• Teams of two. You’re likely to be happier if you form a team on your own

than if we randomly assign them.
 Working solo is strongly discouraged, and the TAs are not a

replacement for a lab partner
• Debugging is a skill best learned through experience
• Do not believe that passing the test cases means your code works...

 Sorry

Course Objectives

1. (One thing that I hope you learn from this class) How an OS is
designed and built. To better know how to use the OS

2. Debugging large programs, adding new features to an existing
(incomplete codebase)

3. Quote in the Cutler lab
“Bugs: if you don’t put them in, you don’t have to take them out.”

4. A lot of material to cover in the first few weeks, before it all makes
sense

5. Textbook: academic head knowledge.
OSPP will be our main textbook
Additional material is available online for free, see class website

6. Lectures: enhance and supplement the textbook and do deep dives
into some specific implementation issues.

7. Projects: get hand dirty, learn by doing

Course Roadmap (subject to change)

1. Chapter 2 Kernel Abstraction

2. Chapter 3 Programming Interface

3. Chapter 4 Concurrency

4. Chapter 5 and 6 Synchronization

5. Chapter 8, 9, 10 Memory Management

6. Chapter 7 Scheduling

7. Chapter 11, 12, 13, 14 Storage

8. Wrap up loose ends

An important underlying concept
Policy vs. Mechanism

• Policy: is what you are trying to achieve
• All the programs running on a computer get equal access to the CPU

• Mechanism: is how you achieve it
• Use timers and context switching to share the CPU

• The lectures and textbook is mostly about policy, the
projects deal with mechanism

OS Tidbit

• My own observation is that the overall basic building blocks
(i.e., structure) of the OS was done in the 50s to early 70s.

• Meaning the fundamental building blocks haven’t changed
much in 50 years.

• The relative importance and scale of the pieces have changed
but their basic functions remain mostly the same.

• The big buckets might be memory, jobs (i.e., tasks and
processes), storage, and a few more.

• There have been tweaks over the years that we will talk
about throughout the class.

What is an
operating system?

• Software to
manage a
computer’s
resources for its
users and
applications

Operating System Roles
(evolved over time)

• Referee:
– Ensures that everyone plays by the rules
– Resource allocation among users, applications
– Isolation of different users, applications from each other
– Communication between users, applications

• Illusionist:
– Each application appears to have the entire machine to itself
– Infinite number of processors, (near) infinite amount of

memory, reliable storage, reliable network transport

• Glue:
– Libraries, user interface widgets, …

Also viewed as Virtualization, Concurrency, and Persistence

Example: File Systems

• Referee:
– Prevent users from accessing each other’s files without

permission
– Even after a file is deleting and its space re-used

• Illusionist:
– Files can grow (nearly) arbitrarily large

– Files persist even when the machine crashes in the middle of a
save

• Glue:
– Named directories, printf, …

OS Challenges

• Portability
– For programs:

• Application programming
interface (API)

• Abstract virtual machine
(AVM)

– For the operating system
• Hardware abstraction

layer

More OS Challenges

• Reliability
– Does the system do what it was designed to do?

• Availability
– What portion of the time is the system working?
– Mean Time To Failure (MTTF), Mean Time to Repair

• Security
– Can the system be compromised by an attacker?

• Privacy
– Data is accessible only to authorized users

Even more OS Challenges

• Performance
– Latency/response time

• How long does an operation take to complete?
– Throughput

• How many operations can be done per unit of time?
– Overhead

• How much extra work is done by the OS?
– Fairness

• How equal is the performance received by different users?
– Predictability

• How consistent is the performance over time?

• Backward and Forward Compatibility
– Can it run legacy apps?
– How to accommodate growing or advancing Hardware. e.g., word

size, or memory size.

Operating System History

• Batch to timeshare

• Single User to multiuser to single user (PC) to multiuser
(servers, etc.)

• Cost of computer time compared to people time

• Single processor* to multiple processors to distributed
systems

*There is a lot of legacy code in Operating Systems specifically for
dealing with single processor systems. What does that mean today?

Early Operating Systems:
Computers Very Expensive

People Less So

• One application at a time
– Had complete control of hardware
– OS was runtime library
– Users would stand in line to use the computer

• Batch systems
– Keep CPU busy by having a queue of jobs
– OS would load next job while current one runs
– Users would submit jobs, and wait, and wait, and

IBM 360 Mainframe

Time-Sharing Operating Systems:
Computers and People Expensive

• Multiple users on computer at same time
– Multiprogramming: run multiple programs at same

time

– Interactive performance: try to complete
everyone’s tasks quickly

– As computers became cheaper, more important to
optimize for user time, not computer time

DEC PDP 11 (mini-computer)
(Tape Drive, Removable Hard Drive,

Control Panel, Operator Console)

More PDP 11

Today’s Operating Systems:
Computers Cheap

• Smartphones
• Embedded systems
• Internet of Things
• Laptops
• Tablets
• Virtual machines
• Data center servers

Tomorrow’s Operating Systems:
Everything gets Bigger*

• Giant-scale data centers
• Increasing numbers of processors per

computer
• Increasing numbers of computers per user
• Very large scale storage

*And more compact

Computer Performance Over Time

• But what hasn’t increased over time?
• Have we reached certain limits?

Next Up (Chapter 2 & 3) Kernel Abstractions

Roadmap for next few days

• Hardware modes

• Interrupts, exceptions, and syscalls (traps)

• Memory layout

• Booting the OS

• Processes and Process Management

Attack on Windows NTFS!

